3.3.19 \(\int \frac {x^3 (A+B x^3)}{\sqrt {a+b x^3}} \, dx\) [219]

Optimal. Leaf size=270 \[ \frac {2 (11 A b-8 a B) x \sqrt {a+b x^3}}{55 b^2}+\frac {2 B x^4 \sqrt {a+b x^3}}{11 b}-\frac {4 \sqrt {2+\sqrt {3}} a (11 A b-8 a B) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{55 \sqrt [4]{3} b^{7/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

[Out]

2/55*(11*A*b-8*B*a)*x*(b*x^3+a)^(1/2)/b^2+2/11*B*x^4*(b*x^3+a)^(1/2)/b-4/165*a*(11*A*b-8*B*a)*(a^(1/3)+b^(1/3)
*x)*EllipticF((b^(1/3)*x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)*x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*
2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/b^(7/3)/(b*
x^3+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {470, 327, 224} \begin {gather*} -\frac {4 \sqrt {2+\sqrt {3}} a \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} (11 A b-8 a B) F\left (\text {ArcSin}\left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{55 \sqrt [4]{3} b^{7/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2 x \sqrt {a+b x^3} (11 A b-8 a B)}{55 b^2}+\frac {2 B x^4 \sqrt {a+b x^3}}{11 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(A + B*x^3))/Sqrt[a + b*x^3],x]

[Out]

(2*(11*A*b - 8*a*B)*x*Sqrt[a + b*x^3])/(55*b^2) + (2*B*x^4*Sqrt[a + b*x^3])/(11*b) - (4*Sqrt[2 + Sqrt[3]]*a*(1
1*A*b - 8*a*B)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) +
 b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 -
 4*Sqrt[3]])/(55*3^(1/4)*b^(7/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*S
qrt[a + b*x^3])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rubi steps

\begin {align*} \int \frac {x^3 \left (A+B x^3\right )}{\sqrt {a+b x^3}} \, dx &=\frac {2 B x^4 \sqrt {a+b x^3}}{11 b}-\frac {\left (2 \left (-\frac {11 A b}{2}+4 a B\right )\right ) \int \frac {x^3}{\sqrt {a+b x^3}} \, dx}{11 b}\\ &=\frac {2 (11 A b-8 a B) x \sqrt {a+b x^3}}{55 b^2}+\frac {2 B x^4 \sqrt {a+b x^3}}{11 b}-\frac {(2 a (11 A b-8 a B)) \int \frac {1}{\sqrt {a+b x^3}} \, dx}{55 b^2}\\ &=\frac {2 (11 A b-8 a B) x \sqrt {a+b x^3}}{55 b^2}+\frac {2 B x^4 \sqrt {a+b x^3}}{11 b}-\frac {4 \sqrt {2+\sqrt {3}} a (11 A b-8 a B) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{55 \sqrt [4]{3} b^{7/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.07, size = 89, normalized size = 0.33 \begin {gather*} \frac {2 x \left (-\left (\left (a+b x^3\right ) \left (-11 A b+8 a B-5 b B x^3\right )\right )+a (-11 A b+8 a B) \sqrt {1+\frac {b x^3}{a}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a}\right )\right )}{55 b^2 \sqrt {a+b x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(A + B*x^3))/Sqrt[a + b*x^3],x]

[Out]

(2*x*(-((a + b*x^3)*(-11*A*b + 8*a*B - 5*b*B*x^3)) + a*(-11*A*b + 8*a*B)*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1
[1/3, 1/2, 4/3, -((b*x^3)/a)]))/(55*b^2*Sqrt[a + b*x^3])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 623 vs. \(2 (207 ) = 414\).
time = 0.32, size = 624, normalized size = 2.31 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(B*x^3+A)/(b*x^3+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

B*(2/11*x^4*(b*x^3+a)^(1/2)/b-16/55*a*x*(b*x^3+a)^(1/2)/b^2-32/165*I*a^2/b^3*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/
b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2
/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^
(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*
3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1
/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))+A*(2/5*x*(b*x^3+a)^(1/2)/b+4/15*I*a/b^2*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1
/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-
3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^
2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2
*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3
)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x^3+A)/(b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^3 + A)*x^3/sqrt(b*x^3 + a), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.47, size = 67, normalized size = 0.25 \begin {gather*} \frac {2 \, {\left (2 \, {\left (8 \, B a^{2} - 11 \, A a b\right )} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) + {\left (5 \, B b^{2} x^{4} - {\left (8 \, B a b - 11 \, A b^{2}\right )} x\right )} \sqrt {b x^{3} + a}\right )}}{55 \, b^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x^3+A)/(b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

2/55*(2*(8*B*a^2 - 11*A*a*b)*sqrt(b)*weierstrassPInverse(0, -4*a/b, x) + (5*B*b^2*x^4 - (8*B*a*b - 11*A*b^2)*x
)*sqrt(b*x^3 + a))/b^3

________________________________________________________________________________________

Sympy [A]
time = 1.35, size = 80, normalized size = 0.30 \begin {gather*} \frac {A x^{4} \Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {4}{3} \\ \frac {7}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt {a} \Gamma \left (\frac {7}{3}\right )} + \frac {B x^{7} \Gamma \left (\frac {7}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{3} \\ \frac {10}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt {a} \Gamma \left (\frac {10}{3}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(B*x**3+A)/(b*x**3+a)**(1/2),x)

[Out]

A*x**4*gamma(4/3)*hyper((1/2, 4/3), (7/3,), b*x**3*exp_polar(I*pi)/a)/(3*sqrt(a)*gamma(7/3)) + B*x**7*gamma(7/
3)*hyper((1/2, 7/3), (10/3,), b*x**3*exp_polar(I*pi)/a)/(3*sqrt(a)*gamma(10/3))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x^3+A)/(b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^3 + A)*x^3/sqrt(b*x^3 + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^3\,\left (B\,x^3+A\right )}{\sqrt {b\,x^3+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(A + B*x^3))/(a + b*x^3)^(1/2),x)

[Out]

int((x^3*(A + B*x^3))/(a + b*x^3)^(1/2), x)

________________________________________________________________________________________